Reg.No.:						
----------	--	--	--	--	--	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9007

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - MAY / JUNE 2024

Sixth Semester

Biotechnology

U19BT622 – CHEMICAL REACTION ENGINEERING

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating	
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating	

PART - A

		$(10 \times 2 =$	20 M	larks)
Q.No.	Questions	Marks	KL	CO
1.	Distinguish Order and Molecularity of chemical reaction.	2	K1	CO1
2.	What type of reaction one can go for variable volume and constant volume reactor?	1 2	K2	CO1
3.	What are the characteristic of ideal batch reactor?	2	K2	CO2
4.	Differentiate space time and space velocity.	2	K2	CO2
5.	Why plug flow is viewed as series of MFR in series?	2	K2	CO3
6.	What are the criteria for connecting reactors in parallel?	2	K1	CO3
7.	What are the basic criteria for parallel reaction to achieve a desired product for constant temperature?	a 2	K1	CO4
8.	What are fractional and overall yield?	2	K1	CO4
9.	What is role of tracer material requirement for RTD study?	2	K1	CO5
10.	List out the relationship between E curve and F curve & E curve and C curve?	e 2	K2	CO5

PART - B

		(5	x 13 =	arks)	
Q.No.		Questions	Marks	KL	CO
11.	a)	Discuss the classification of chemical reaction based on the reaction types. (OR)	13	K2	CO1
	b)	Explain the temperature dependency of a rate equation using Arrhenius theory and collision theory and transitionstate theory.	13	K3	CO1
12.	a)	Derive the design equation for i. MFR ii. PFR (OR)	6 7	K2	CO2
	b)	At room temperature sucrose is hydrolyzed by the catalytic action of the enzyme sucrose as follows:	13	K3	CO2

Starting with a sucrose concentration $C_{A0} = 1.0$ millimol/liter and an enzyme concentration $C_{EO} = 0.01$ millimol/liter, the following kinetic data are obtained in a batch reactor (concentrations calculated from optical rotation measurements):

C _A milli mol/ liter	0.84	0.68	0.53	0.38	0.27	0.16	0.09	0.04	0.018	0.006	0.0025
t, hr	1	2	3	4	5	6	7	8	9	10	11

Determine whether these data can be reasonably fitted by a kinetic equation of the Michaelis-Menten type, or

$$-r_{A} = \frac{k_{3}C_{A}C_{E0}}{C_{A} + C_{M}}$$
 where $C_{M} =$ Michaelis constant

If the fit is reasonable, evaluate the constants k_3 and C_M . Solve by the integral method

i. Derive the design equation for a first order liquid phase reaction being in a system consisting of MFR of equal volume connected in series
ii. Derive the design equation for a first order liquid phase reaction being in a system consisting of MFR of different volume connected in series

(OR)

b) We wish to treat 10 liters/min of liquid feed containing 1 mol A/liter to 13 K3 CO3 95% conversion using two mixed flow reactors in series. The stoichiometry and kinetics of the reaction are given by

$$A \rightarrow R$$
, $-r_A = \frac{C_A}{0.2 + C_A} \frac{\text{mol}}{\text{liter} \cdot \text{min}}$

Find the size of the two (mixed flow reactors) units needed

- 14. a) Derive the equation for quantitative treatment of MFR and PFR. 13 K2 CO4 (OR)
 - b) Under appropriate conditions A decomposes as follows: 5+8 K3 CO4 =13

$$k_1 = 0.1/ \min$$
 $A \longrightarrow R \longrightarrow S$

R is to be produced from 1000 literlhr of feed in which $C_{A0} = 1$ mol/liter, $C_{R0} = C_{S0} = 0$.

- i. What size of plug flow reactor will maximize the concentration of R, and what is that concentration in the effluent stream from this reactor?
- ii. What size of mixed flow reactor will maximize the concentration of R, and what is C_{R} , max in the effluent stream from this reactor?
- 15. a) Explain what is residence time distribution? And how it is used to 13 K2 CO5 determine performance of non-ideal flow in reactors

(OR)

- b) A step experiment is made on a reactor. The results are shown in figure 5+8 K3 CO5 given below =13
 - i. Is the material balance consistent with the tracer curve?
 - ii. If so, determine the vessel volume V, 7, the F curve, and the E curve.

PART - C

			$(1 \times 15 =$	= 15 M	(arks
Q.No.		Questions	Marks	KL	CO
16.	a)	Describe the comparison of size requirement for MFR /PFR for different type of reaction.	15	K2	CO3
		(OR)			
	b)	Substance A in the liquid phase produces R and S by the following reactions:	15	K3	CO3

A feed ($C_{A0}=1$, $C_{R0}=0$, $C_{S0}=0.3$) enters two mixed flow reactors in series, ($\tau_1=2.5$ min, $\tau_2=10$ min). Knowing the composition in the first reactor ($C_{A1}=0.4$, $C_{R1}=0.2$, $C_{S1}=0.7$), find the composition leaving the second reactor.